
WaveKey: Secure Mobile Ad Hoc Access to
RFID-Protected Systems

Dianqi Han∗, Ang Li†, Jiawei Li‡, Yan Zhang§, Tao Li¶, Yanchao Zhang†
∗ University of Texas at Arlington † University of Michigan-Dearborn ‡ Arizona State University

§ University of Akron ¶ University of Michigan-Dearborn

Abstract—This paper presents the design and evaluation of
WaveKey, a cross-modal deep learning-based method to enable
mobile ad hoc in-situ access to RFID-protected cyber systems.
Built upon the ever-growing popularity of user-carried mobile
devices and RFID technologies, WaveKey is motivated by the need
for secure and user-friendly data access in various application
contexts. WaveKey explores a random gesture performed by the
mobile user to induce correlated IMU data and RFID signals at
the involved mobile device and RFID server, adopts deep learning
techniques to extract the complex cross-modal correlation, and
devises an Oblivious Transfer-based key-agreement protocol to-
ward secure and efficient key establishment. Theoretical analysis
and experimental human-based evaluation confirmed the high
security and efficiency of WaveKey. In particular, WaveKey shows
very high key-establishment success rates consistently exceeding
98% across all evaluated settings and renders extremely low
success rates below 0.5% for all evaluated common attacks.

Index Terms—mobile devices, RFID systems, key establish-
ment.

I. INTRODUCTION

This paper proposes WaveKey, a cross-modal deep

learning-based method to enable mobile ad hoc in-situ access
to RFID-protected systems. Leveraging the rising popularity of

user-carried mobile devices and RFID technologies, WaveKey

addresses the demand for secure and user-friendly data access

in the following representative application contexts.

• Context 1: RFID line-up service systems. Visitors to ser-

vice centers, customer support desks, government offices,

hospitals, or similar locations receive a service ticket

with a unique RFID tag. These tickets are distributed

through automatic dispensers or receptionists. The RFID

ticket communicates with the backend server, indicating

the person’s position in the queue for fair and organized

service. Users can use their mobile devices to submit

required paperwork wirelessly, which is tied to their RFID

ticket numbers .

• Context 2: RFID location-based access control. In a

restricted area, a non-removable, non-forgeable RFID

card is installed to control and manage access to sensitive

physical or electronic resources. Authorized personnel

can conveniently access these resources using their mo-

bile devices after verifying their physical proximity to the

RFID card.

• Context 3: RFID-assisted secure mobile system access.
RFID key fobs are commonly used in a wide range of

settings, including residential and commercial buildings

for keyless entry, employee access control in offices,

vehicle keyless entry and ignition systems, and more.

People may want to use their RFID key fobs to register

random mobile devices for securely interacting with the

corresponding system.

The above scenarios can be readily adapted to illustrate

other application contexts that employ RFID access control.

In all such applications, the establishment of an ad hoc
(cryptographic) key between a user’s mobile device and the

RFID system becomes critical. This key is necessary to ensure

the security of wireless communications between the mobile

device and the RFID-protected system. Additionally, it can

eliminate the necessity for a long-term user-specific crypto-

graphic key, which might be challenging to establish/update

and susceptible to key exposure.

WaveKey is specifically designed to fulfill the above critical

requirement in a secure and user-friendly manner. As depicted

in Fig. 1, its functionality involves the user waving their

mobile device alongside the corresponding RFID device (e.g.,

a fresh RFID ticket, a secured RFID card, or a unique key

fob) together randomly for a brief duration. The randomness

introduced by the user’s hand-waving gesture causes fluctua-

tions in the IMU sensor on the mobile device and variations

in the wireless signals detected by the backend RFID reader.

These correlated fluctuations and variations are then leveraged

to establish a common secret key, effectively confirming the

co-location of the mobile and RFID devices.
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Fig. 1. WaveKey system context.

While the WaveKey design may appear straightforward, it

encounters two critical challenges. The first challenge involves
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formulating the complex cross-modal relationship between

the IMU data and RFID signals. The three-dimensional IMU

data contains fine-grained spatial information about hand

movements but is collected at a relatively low sampling

rate (typically around 100 Hz) [1]. On the other hand, the

RFID signal, with a higher sampling rate, provides richer

temporal information about the gesture but only captures one-

dimensional spatial information, specifically, the propagation

distance. The presence of multi-path effects in RFID signal

propagation further complicates this cross-modal relationship.

The second challenge arises from the short duration of the

random gesture, which introduces potential vulnerabilities to

the system. The brevity of the gesture, necessary for ensuring

a smooth user experience, limits the entropy that the gesture

can provide for the key, making it potentially susceptible to

guessing attacks. Additionally, the gesture is vulnerable to

shoulder-surfing, wherein an attacker could easily infer the

key by observing the gesture during its brief execution.

To address these challenges, we incorporate deep learning

techniques and a sophisticated key-agreement protocol into the

scheme design. Motivated by the success of deep learning in

cross-modal tasks such as image caption generation [2], [3],

we utilize it to extract the cross-modal correlation between

the IMU data and RFID signal. Specifically, we train two

autoencoders to project the IMU data and RFID signal to a

latent space related only to the hand gesture. In this way, the

mobile device and RFID system server can obtain two highly

similar feature representations of the gesture. Based on the

two feature representations, we design an Oblivious Transfer

(OT)-based key-agreement protocol to generate a common key

at both devices, which leverages a time-sensitive challenge-

response mechanism to defeat possible attacks.

We implemented WaveKey on a commodity RFID reader

and various mobile devices. Through extensive evaluation

with six volunteers, we achieved negligible success rates (<
0.5%) for all evaluated attacks, confirming the robust secu-

rity of WaveKey. The scheme also demonstrated exceptional

adaptability, with key-establishment success rates consistently

exceeding 98% across all evaluated settings. Furthermore,

the experimental results affirmed the high efficiency and low

latency of the WaveKey system.

This paper is structured as follows. §II discusses related

studies. §III presents the problem statement and adversary

model. §IV illustrates the WaveKey design. §V analyzes the

security of WaveKey against common attacks. §VI shows

experimental evaluation results. §VII concludes this paper.

II. RELATED WORK

Our WaveKey scheme is most germane to the rich literature

on pairing two mobile devices or equivalently establishing a

shared key between them. For example, ShakeUnlock [4] and

WristUnlock [5] explore correlated IMU sensor data on two

mobile devices for shared-key establishment. There are many

schemes exploring the reciprocity of wireless channels [6]–

[8] and acoustic channels [9]–[11] for shared-key generation.

These schemes also rely on the same type of signals, such

as Channel State Information (CSI), at two involved devices.

Furthermore, researchers have designed many cryptography-

based device pairing schemes that are effective in their targeted

scenarios [12]–[15]. These schemes typically relies on a pre-

shared user-specific cryptographic key [12]–[14] or a trusted

third party [15], which may not be available in the application

contexts WaveKey targets.

WaveKey differs significantly from existing device-pairing

methods. First, WaveKey is a cross-modal deep learning-based

approach that applies to disparate IMU and RFID data. Its

methodology can be easily adapted to work with other hetero-

geneous sensing data for key agreement. Second, WaveKey

does not rely on any pre-shared secret or trusted third party.

Lastly, WaveKey achieves location-based in-situ access control

for its dependence on a physically and information-wisely

secure RFID device in the targeted application context.

WaveKey is also complementary to the numerous studies on

RFID system security. For instance, hardware fingerprinting

of RFID tags against tag forgery was explored in [16]–[18].

Two-factor authentication for RFID systems was proposed in

[19], [20], designed for user’s mobile devices and biometric

information, respectively. The interrelation among RFID tags

in a federated tag array was utilized to authenticate them in

[21], [22]. Additionally, researchers have proposed various

cryptographic designs to enhance the security of RFID com-

munication protocols [23], [24]. While these schemes focus on

securing the RFID system itself, they contribute to the RFID

system security on which WaveKey relies.

III. PROBLEM STATEMENT AND ADVERSARY MODEL

Problem Statement. We address a generic problem setting

applicable to all three exemplary contexts mentioned in §I after

minor adaptations. A user wants to use a handheld mobile

device (e.g., a smartphone, smartwatch, or tablet) to securely

interact with an RFID-protected information system. The user

and their mobile device can be unknown to the system, as seen

in Contexts 1 and 3. They might also have been enrolled into

the system, as observed in Context 2. Our WaveKey scheme is

designed to work in both scenarios without any modification.

Notably, WaveKey provides an additional security factor (i.e.,

location-based access control) in the second scenario.

The RFID system comprises a frond-end RFID device, a

backend server, and an RFID reader that serves as a com-

munication proxy between the former two. The RFID device

can take many forms such as a service ticket in Context 1, a

secured RFID card in Context 2, or a key fob in Context 3. We

assume that existing administrative and information-security

mechanisms are in place to ensure the physical security of

the RFID device and the communication security of the entire

RFID system. For example, the RFID service ticket can be

generated on the fly and contain a random ID that only works

for a short duration. The RFID card can be non-removable

via a chained cable and may also use a dynamic ID for each

new user. Additionally, sophisticated cryptographic and non-

cryptographic RFID security schemes such as fingerprinting

[18] can be deployed to thwart common attacks such as RFID
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cloning and counterfeiting. In addition, the mobile device and

the RFID server can communicate via a wireless channel

such as WiFi or Bluetooth. However, since these channels

lack a pre-shared secret key, they are inherently insecure for

transmitting sensitive data.

WaveKey aims to establish an ad hoc key between the user’s

mobile device and RFID server with the aid of the front-end

RFID device in a secure and user-friendly manner. Since the

RFID device is presumed to be physically and information-

wise secure within the application venue, the ad hoc key not

only verifies the physical presence of the mobile user but

also enables secure interactions with the targeted system in

all subsequent transactions.

Adversary Model. We are concerned about adversaries

attempting to deduce the secret key established with our

WaveKey scheme. If successful, they could compromise the

secure communications between the mobile user and in-

formation system, leading to serious consequences such as

unauthorized access, data theft, and falsification of sensitive

information. In this scenario, we assume a white-box attack

model, where the adversary possesses complete knowledge of

the internal workings and structure of WaveKey. The adversary

may employ the following attack strategies.

• Eavesdropping. The adversary sniffs the communication

between the mobile device and the RFID server to obtain

useful information for key inference.

• Man-in-the-Middle (MitM). The adversary disrupts the

communication between the mobile device and the RFID

reader and creates a malicious channel by relaying their

messages to each other. Through this method, the attacker

can modify the exchanged messages between the two

devices to manipulate the established key.

• RFID signal spoofing. The adversary uses spoofed RFID

signals to manipulate the key establishment process.

• Device spoofing. The adversary attempts to impersonate

the RFID server during key establishment with the mobile

device while disrupting their communications.

IV. WAVEKEY DESIGN

A. Overview of WaveKey Workflow

WaveKey is versatile and can work with Low-Frequency

(LF), High-Frequency (HF), and Ultra-High-Frequency (UHF)

RFID systems with minor adaptations. In this paper, we use

UHF RFID systems as an example in which RFID devices

communicate with the reader via signal backscattering.

The WaveKey key establishment process is composed of

three distinct phases, as visually depicted in Fig. 2. The

initial phase, known as Data Acquisition, commences when

the user simultaneously holds their mobile device and the

secured RFID device in the application context using the

same hand. During this brief interaction, the user performs a

random gesture that lasts for only a few seconds. The mobile

device is equipped with standard IMU sensors, including an

accelerometer, a gyroscope, and a magnetometer. It diligently

records and calibrates the changes in IMU sensor data that

occur during the user’s gesture. Simultaneously, the RFID

server processes the backscattered signal variations induced

by the user’s gesture to obtain relevant data. In the subsequent

Key-Seed Generation phase, the mobile device employs an

autoencoder named IMU-En, accompanied by quantization

and encoding operations, to generate a key-seed denoted as

fM based on its IMU data. Similarly, the RFID server derives

its key-seed, denoted as fR, using a distinct autoencoder called

RF-En. In the final Key Agreement phase, the mobile device

and RFID server collaboratively execute a bidirectional OT

(Oblivious Transfer) protocol to establish a common key of the

desired length, utilizing the two key seeds, fM and fR. This

concludes the secure and efficient key establishment process

within the WaveKey scheme.

The two autoencoders, IMU-En and RF-En, play pivotal

roles in the WaveKey scheme. Utilizing deep learning tech-

niques, they are meticulously crafted and trained to generate

two highly similar key-seeds from disparate sensor data: IMU

and RFID data. It is worth highlighting that IMU-En and

RF-En are designed to work with any arbitrary combination

of a mobile device and an RFID server, rather than being

tailored for specific pairs. Once trained, these autoencoders

can be seamlessly deployed in any instance of WaveKey to

secure mobile ad hoc access to RFID-protected systems. It is

noteworthy that the security of our proposed scheme is not

dependent on keeping the two autoencoders concealed from

the attacker.

B. Data Acquisition

1) Data collection: The mobile device and RFID server

record data from their IMU sensors and RFID reader, re-

spectively, while the user is performing the random gesture.

Since WaveKey relies on the correlation between the two

devices’ collected data for key establishment, clock synchro-

nization between them is necessary. However, there is an

inevitable clock shift between them, impeding the subsequent

key generation. We slightly tailor the gesture to address this

issue. Particularly, we require the user to shortly pause their

hand before performing the random gesture. In this way, both

devices can detect the start of the hand movement from the

significant variance increases in their respective data and then

begin data recording, whereby the collected data are synchro-

nized. Moreover, we only require a brief random gesture to

minimize user effort. According to our experimental results,

two seconds are long enough for secure key establishment, so

WaveKey requires the random gesture to be slightly longer

than that. Correspondingly, the mobile device records data

from its gyroscope, accelerometer, and magnetometer for two

seconds after detecting the start of the random gesture. The

RFID device also records the phases and magnitudes of the

RFID signals backscattered by the tag for the same period.

2) Data processing: After data collection, the mobile de-

vice calibrates its accelerometer data to obtain its linear

accelerations during the random gesture. In particular, the

mobile device first aligns its gyroscope, accelerometer, and

magnetometer data through interpolation. We set 100 Hz as the
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Fig. 2. The WaveKey workflow.

interpolation frequency since it fits the sampling rates of most

modern mobile devices [1]. Next, the smartwatch estimates its

poses, i.e., the directions of its x-, y-, and z-axes relative to the

earth, across the random gesture. The initial pose at the begin-

ning of the gesture can be obtained from the accelerometer and

magnetometer measurements, while the subsequent poses can

be estimated with the accumulated angular velocities measured

by the gyroscope. During the short data collection period, the

gyroscope drift is found to be negligible [25]. As a result,

we opt to avoid the use of complex sensor fusion algorithms,

such as the Kalman filter, in order to minimize computational

overhead. Finally, the mobile device obtains 200 estimated

linear accelerations by performing coordination transformation

on the 200 accelerometer measurements. We represent the 200

linear accelerations with a 200×3 matrix and denoted it with

A.

Data processing at the RFID server includes phase un-

wrapping and denoising. Phase unwrapping aims to reveal

the real changing trend of the RFID phase data because it

is measured as the modulus of 2π and is wrapped in the

range [0, 2π]. Particularly, we eliminate any phase jumping

point, which refers to the phase measurement whose difference

with the previous one exceeds π, by adding 2π or −2π
to it. Next, we denoise the phase and magnitude data with

two filters. We use the Savitzky-Golay smoothing filter [26]

for both phase and magnitude data since it can preserve

important data features, such as local maxima and minima,

for efficient key generation. We represent the processed RFID

data with a 2n× 2 matrix and denote it with R. The first and

second columns of R correspond to the processed phases and

magnitudes, respectively. n denotes the sampling rate of the

RFID reader, which equals 200 in our prototype. Hereafter,

we will use n = 200 as an example to demonstrate WaveKey

design.

C. Key-seed Generation

After data acquisition, the mobile device and RFID server

proceed to obtain two similar vectors for key-seed generation.

In particular, the mobile device feeds its A to IMU-En and

obtains a vector, denoted as fM, from the autoencoder output.

Similarly, the RFID server obtains a vector, denoted as fR,

by feeding R to RF-En. We design IMU-En and RF-En to

ensure that fM and fR are of the same length, denoted as

lf . As lf is a hyperparameter significantly impacting system

performance, its empirical value is determined through an

experiment demonstrated in §VI. IMU-En and RF-En are

trained to extract feature representations related to the random

gesture from A and R, respectively, resulting in highly similar

feature vectors fM and fR.

Next, the two devices each obtain a bit sequence as the key-

seed by quantizing their feature vectors. Every element in the

two feature vector is a variable following a certain distribution,

which can be converted to a short bit sequence through a

routine quantization and encoding process [27]. In particular,

its range is divided into many bins, which each correspond

to a pre-defined bit sequence. In key generation, these bins

are designed so the variable falls into them with the same

probability, which maximizes the randomness of converted bit

sequence for a secure key. Therefore, the boundary between

bins i and i+1 is determined by solving the equation below:

Φ(bi) = i/Nb, (1)

where Φ(·) denotes the cumulative distribution function of

the distribution, Nb denotes the total number of quantization

bins, and bi denotes the boundary between bins i and i + 1.

In WaveKey, we design the IMU-En and RF-En to both end

with batch-norm layers, whereby all the elements in fM and

fR follow the normal distribution and can employ the same

bin setting for quantization. In addition, we determine the

bin amount Nb through an experiment demonstrated in §VI

and adopt the gray code [28] for encoding. Concatenating the

bit sequences extracted from all the elements in their feature

vectors, the mobile device and RFID server each obtain an

ls-bit long sequence as the key-seed, where

ls = lf · log2 Nb. (2)

We denote the mobile device’s and the RFID server’s key-

seeds with SM and SR, respectively. Obviously, SM and SR

are very similar and only slightly differ in a few bits.

1345



D. Key Agreement

In the final stage, the mobile device and RFID server

cooperate to perform key agreement that is designed upon

the 1-out-of-2 Oblivious Transfer (OT) to obtain a common

key in a secure fashion, which can be much longer than their

key-seeds. This section first briefly reviews 1-out-of-2 OT and

then introduces our key agreement protocol in detail.

Sender Receiver

Input: M0, M1 Input: c ∈ {0, 1}
Output: Mc

a ← Zu b ← Zu

Ma ← ga mod u

if c = 0: Mb ← gb mod u

if c = 1: Mb ← Mag
b mod u

Mb

k0 ← H(Mb
a) kR ← H(Ma

b)

k1 ← H((
Mb

Ma
)a)

e0 ← Encrypt(M0, k0)

e1 ← Encrypt(M1, k1)

Mc ← Decrypt(ec, kc)

Fig. 3. 1-out-of-2 OT nutshell.

1) 1-out-of-2 OT: 1-out-of-2 OT allows the receiver to

selectively obtain one of the sender’s two secrets, denoted as

M0 and M1, respectively. In this process, the receiver cannot

acquire the secret not selected, the sender is unaware of which

of the two secrets is selected, and a third party gains no

information regarding the two secrets or which of them is

selected [29]. Among the many OT protocols, WaveKey incor-

porates the computational efficient one proposed in [30], with

its nutshell demonstrated in Fig. 3. In particular, the sender and

receiver agree on two large prime numbers, denoted as g and u,

which are not necessarily hidden from a third party. The sender

starts an OT instance by sending Ma = (ga mod u) to the

receiver, where a is a random integer in [0, u]. The receiver

responds with a message crafted according to which secret

the receiver would like to obtain. Particularly, the receiver

responses with Mb = (gb mod u) to obtain M0 and responses

with Mb = (Mag
b mod u) otherwise. The sender encrypts

M0 and M1 with the hash values of Mb
a and (Mb/Ma)

a,

respectively, and sends the two ciphers to the receiver, where

only the one carrying the selected secret can be decrypted.

2) OT-based key agreement: The key agreement protocol

is essentially a bidirectional 1-out-2 OT, which is designed to

ensure that a malicious device cannot impersonate either of

the two devices to the other one. In brief, the two devices

obliviously transmit their many pairs of random bit sequences

to each other as the parts of the eventually established key.

The nutshell is demonstrated in Fig. 4. Particularly, the mobile

device and RFID server each generate ls pairs of random bit

sequences, where ls denotes the common length of their key-

seeds. We denote the i-th sequence pairs of the mobile device

and RFID server with 〈x0
i , x

1
i 〉 and 〈y0i , y1i 〉, respectively. All

the bit sequences are lb-bit long, which is determined by the

length of the desired key. Assuming that an lk-bit long key is

needed, they determine lb = �lk/(2 · ls)�.

Next, the two devices obliviously transmit one sequence in

each of their sequence pairs to each other. Specifically, the

mobile device obliviously transmits the sri-th sequence of the

i-th sequence pair, i.e., xsri
i , to the RFID server, where sri ∈

{0, 1} denotes the i-th bit in the RFID server’s key-seed SR.

Similarly, the RFID server obliviously transmits ysmi
i to the

RFID server, where smi denotes the i-th bit in the mobile

device’s key-seed SM. After all the OT instances, the mobile

device selects one sequence from each of its sequence pairs

based on its key-seed and concatenate them with the sequences

it obtained from the RFID server to obtain a preliminary key

KM = (xsm1
1 ‖ ysm1

1 ‖ · · · ‖ xsmls

ls
‖ ysmls

ls
). The RFID server

obtains its preliminary key KR = (xsr1
1 ‖ysr11 ‖· · ·‖xsrls

ls
‖ysrlsls

)
through a similar process. Obviously, the counterparts in KM

and KR, i.e., xsmi
i ‖ ysmi

i and xsri
i ‖ ysrii , are the same if

smi = sri, and may differ otherwise. Therefore, the ratio of

mismatched bits between KM and KR is no more than that

between SM and SR.

Finally, the two devices negotiate to mitigate the difference

between their preliminary keys and confirm the final key.

Specifically, the mobile device sends the error correction code

(ECC) of its key KM together with a nonce N to the RFID

server as a challenge. The RFID server adjusts its key KR

accordingly to obtain KM as the final key K and responds to

the mobile device with the hash-based message authentication

codes (HMAC) of the nonce N using K as the password.

After verifying the HMAC of N with KM, the mobile device

also adopt KM as the final key K.

We combine all the OT instances of the same direction into

one for a more efficient communication and set a deadline

for the arrival times of critical messages to defeat possible

message forgery. In particular, an OT instance involves the

transmission of three messages, i.e., Ma, Mb, and 〈e0, e1〉 in

Fig. 3. The mobile device transmits the counterpart messages

to Ma, Mb, and 〈e0, e1〉 associated with all the OT instances

together as three messages: MA,M = m1 ‖ m2 ‖ . . . ‖ mls ,

MR,M = n1‖n2‖. . .‖nls , and ME,M= 〈e01, e11〉‖. . .‖〈e0ls , e1ls〉,
respectively. The RFID server acts similarly and only needs

to transmit three messages, MA,R, MR,R, and ME,M, to

obtain its preliminary key. In addition, the mobile device and

RFID server must receive MA,R and MB,M no later than

2+τ seconds after the start of the gesture. Otherwise, the key-

establishment instance is discarded. We determine τ through

experiment so that the two devices of key establishment have

enough time to craft their respective messages, but an adver-

sary cannot catch up. We demonstrate more details regarding

the experiment in §VI.

E. Autoencoder Training

This section explores the process of obtaining the two

autoencoders, IMU-En and RF-En, through dataset generation

and model training. As described in §IV-C, the main goal of

WaveKey is to leverage IMU-En and RF-En to extract the
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Mobile device RFID server

Input: SM, (a1, . . . , als) ← Z
l
u, Input: SR, (ā1, . . . , āls) ← Z

l
u,

(b1, . . . , bls) ← Z
l
u, (b̄1, . . . , b̄ls) ← Z

l
u,

〈x0
1, x

1
1〉, . . . , 〈x0

ls
, x1

ls
〉 〈y01, y11〉, . . . , 〈y0ls , y1ls〉

mi ← gai mod u, m̄i ← gāi mod u,

MA,M = m1 ‖m2 ‖ . . . ‖mls MA,R = m̄1 ‖ m̄2 ‖ . . . ‖ m̄ls

ni ← gbi mod u, if smi = 0; n̄i ← gR̄i mod u, if sri = 0;

ni ← m̄ig
bi mod u, if smi = 1. n̄i ← mig

R̄i mod u, if sri = 1.

MR,M = n1 ‖ n2 ‖ . . . ‖ nls MR,R = n̄1 ‖ n̄2 ‖ . . . ‖ n̄ls

k0
i ← H(ni

ai), e0i ← E(x0
i , k

0
i ); k̄0

i ← H(n̄āi
i ), ē

0
i ← E(y0i , k̄

0
i );

k1
i ← H((

ni

mi

)ai), e1i ← E(x1
i , k

1
i ). k̄1

i ← H((
n̄i

m̄i

)āi), ē1i ← E(y1i , k̄
1
i ).

ME,M= 〈e01, e11〉 ‖ . . . ‖ 〈e0ls , e1ls〉 ME,R= 〈ē01, ē11〉 ‖ . . . ‖ 〈ē0ls , ē1ls〉

KM = (xsm1
1 ‖ ysm1

1 ‖ · · · ‖ xsmls
ls

‖ ysmls
ls

) KR = (xsr1
1 ‖ ysr11 ‖ · · · ‖ xsrls

ls
‖ ysrlsls

)

Challenge ← ECC(KM) ‖N

Response ← HMAC(N,KM)

Exchange

Exchange

Exchange

Challenge

Response

Fig. 4. The nutshell of the WaveKey key agreement protocol.

correlation between the linear acceleration matrix A and the

RFID data matrix R. The primary objective is to ensure that

IMU-En and RF-En produce feature vectors with three key

properties: i) relevance only to the random hand movement; ii)

high similarity between the feature vectors; and iii) retention

of crucial information about the hand movement trajectory for

efficient key establishment. We carefully design the dataset

generation and model training processes to achieve these

objectives effectively.

1) Dataset generation: We implemented WaveKey, as de-

scribed in §VI-A, and engaged six volunteers to perform

random gestures for data collection. To ensure the adaptabil-

ity of the trained autoencoders to various key-establishment

scenarios, we conducted data collection in diverse environ-

ments and with different mobile devices. The data collection

used three cellphones and one smartwatch. Each volunteer

performed a total of 30 random gestures, each lasting longer

than 15 seconds, with each of the four mobile devices. Out

of the 30 gestures, 20 were performed in two distinct static

environments, with 10 gestures in each environment. The

remaining 10 gestures were conducted in a dynamic environ-

ment with human movement. Overall, we collected data from

6 × 4 × 30 = 720 gestures. For each gesture, we randomly

selected 20 time windows, each of which was two seconds

long and may have overlapped with others. We processed the

data collected during each time window, as demonstrated in

§IV-B, to obtain a linear acceleration matrix and an RFID

signal matrix, which together constituted a data sample. In

the end, we amassed a dataset comprising 14,400 samples,

denoted as D = {〈Ai,Ri〉| i = 1, 2, · · · , 14400}. Here, Ai

and Ri represent the linear acceleration matrix and the RFID

signal matrix of the i-th sample, respectively. This extensive

dataset forms the foundation for training the autoencoders,

enabling the effective correlation extraction between the linear

acceleration and RFID data for secure key establishment.
2) Model training: We design IMU-En and RF-En as two

Convolutional Neural Networks (CNNs) and incorporate an

auto-decoder, denoted as De, for their training. The diagrams

of these three neural networks are illustrated in Fig. 5. IMU-

En and RF-En both comprises two convolutional layers, which

are followed by ReLu units, one fully connected layer, and one

batch-norm layer. De comprises four layers, with the first and

third layers being deconvolutional layers, and the second and

fourth layers being fully connected layers. ReLu activation

units are employed after the first three layers of De. A notable

aspect of our design is that we choose to conclude IMU-En and

RF-En with batch-norm layers. This strategic decision ensures

that the elements of the output feature vectors fM,i and fR,i

conform to a normal distribution, which greatly facilitates the

quantization setting discussed in §IV-C.
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Fig. 5. WaveKey encoder-decoder diagram.

We jointly train IMU-En, RF-En, and De, as demonstrated

in Fig. 6. Given a training sample 〈Ai,Ri〉, IMU-En and RF-

En take Ai and Ri as their respective inputs and produce

two feature vectors, denoted as fM,i and fR,i, respectively.

We intend to minimize the difference between the two feature

vectors so that the key-seeds generated from them can be

close enough to facilitate key agreement. Meanwhile, we

utilize De to recover Ri from fM,i so that the two feature

vectors still retain enough randomness induced by the gesture

to produce two highly random key-seeds. However, during

our experiments, we observed that the RFID phase data is

highly sensitive to changes in the environment, whereas such

variations have negligible impacts on the IMU data. As a

consequence, attempting to accurately recover Ri solely from

fM,i has proven to be almost impossible. To address this issue,

we design De to recover the RFID magnitude data instead,

which is more robust against environment changes. We utilize

the following loss function for model training:

L =
∑

〈Ai,Ri〉∈D
(‖fM,i, fR,i‖2+λ · ‖De(fM,i), RMag

i ‖2), (3)

where ‖·‖2 measures the Euclidean distance between two

vectors. RMag
i denotes the magnitude part of R, i.e., a vector
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comprising the 400 RFID signal magnitudes. λ is a scalar,

which we determined as 0.4 through empirical experiments.

IMU-En

RF-En

De

Fig. 6. The intuition of the WaveKey autoencoder training.

V. SECURITY ANALYSIS

This section analyzes the high security of WaveKey against

various attacks, including eavesdropping, RFID signal spoof-

ing, device spoofing, and the MitM attack.

A. Eavesdropping and RFID Signal Spoofing

In the eavesdropping attack, the mobile device and RFID

server exchange messages during the key-agreement stage,

making it possible for an adversary to intercept these com-

munications. However, our key-agreement protocol is based

on the highly secure OT primitive, which is immune to eaves-

dropping attempts. Therefore, WaveKey inherently maintains

its robustness against eavesdropping attacks.

In the signal-spoofing attack, the adversary aims to manip-

ulate the RFID signals reaching the RFID server. However,

this attack will have no impact on the IMU data collected by

the mobile device, leading to a disruption in the correlation

between the IMU and RFID data. Consequently, the key-

seeds generated by the mobile device and RFID server will

be significantly different, leading to key-agreement failure. As

a result, signal-spoofing attacks cannot assist the adversary in

obtaining the common key and are easily detectable through

increasing key-establishment failure rates.

B. Device Spoofing

In device spoofing, the adversary impersonates the RFID

server to perform key establishment with the mobile device

while jamming the communication between them. Once suc-

cessful, the adversary can directly request sensitive infor-

mation from the mobile device. Obtaining the key-seed SM

generated at the mobile device is the key to successful device

spoofing. Generally, the adversary may manage to obtain SM

through three different ways listed as follows.

1) Random guessing: The adversary makes a random guess

on SM whereby to perform key establishment with the mobile

device. We denote the adversary’s guess, which is a bit

sequence, with SG. Since the key-agreement protocol adopts

ECC to mitigate the inevitable small difference between the

two benign key-seeds, the attack would succeed if the ratio of

mismatch bits between SG and SM is below the error correction

rate of ECC. Accordingly, we derive the success rate of device

spoofing based on random guessing as

Pg =

ls·η∑
i=0

(
ls
i

)/
2ls , (4)

where η denotes the error correction rate of the ECC code,

and ls denotes the length of the key-seed. η and ls are

two hyperparameters of our scheme, which we manage to

obtain through experiments as 0.04 and 38, respectively. The

corresponding success rate Pg is around 0.04%. Therefore, the

adversary can hardly succeed in device spoofing by making a

random guess on SM.

2) Gesture mimicking: The adversary attempts to infer SM

by imitating the user’s random gesture. In this scenario, the

adversary observes the user’s gesture in close proximity and

replicates it while holding their own mobile device. Subse-

quently, the adversary processes the IMU data collected by

their mobile device and generates a key-seed, denoted as SC,

for device spoofing. To assess the effectiveness of this attack,

we conducted experiments and found that the success rate is no

more than 0.2%. Therefore, device spoofing based on gesture

mimicking does not compromise the security of WaveKey.

3) Data recovery: The adversary employs various sensors

to track the user’s hand movement trajectory during the

execution of random gestures, aiming to estimate the IMU

data SM and deduce the established key. Notable sensor

types for this purpose include acoustic transceivers [31], [32],

mmWave radars [33], [34], conventional RGB cameras [35],

and advanced RGB-D cameras [36], [37]. The accuracy of the

estimated IMU sensor data is critically dependent on the preci-

sion of the captured hand movement trajectory, making highly

accurate hand tracking essential for successful key inference.

Since object tracking accuracy decreases with increasing dis-

tance between the sensor and the object, positioning the sensor

close to the user is imperative to achieve the necessary hand

tracking precision. Consequently, bulky RGB-D cameras are

impractical for implementation of this attack.

Among other three sensor types, conventional RGB cameras

exhibit the best hand tracking accuracy. The adversary may opt

for two distinct approaches: deploying a concealed camera

to record the user’s gesture and stream the video in real-

time to a remote server for video processing, or utilizing

a portable device, such as a smartphone with an integrated

camera, to directly record the gestures and execute on-device

video processing. These methods are referred to as remote

and in-situ recording strategies, respectively. As demonstrated

in §VI-E, the remote recording-based attack, when combined

with advanced 3D object positioning algorithms, demonstrates
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a trivial probability of 0.5% in successfully obtaining a valid

key-seed. Moreover, the inherent latency associated with video

streaming impedes the adversary’s from replying the valid key-

seed to the user’s mobile device within the stipulated time

window. In-situ recording is confined to real-time execution

of comparatively less complex object positioning algorithms,

which do not yield IMU data estimations of adequate fidelity

to generate a valid key-seed.

In summary, WaveKey is highly secure against all three

kinds of device spoofing attacks.

C. Man-in-the-Middle (MitM) Attack

The MitM attack on wireless communications can only

occur during the key agreement stage. In this attack, the ad-

versary jams the benign communication channel between the

two devices and establishes a malicious channel by relaying

their messages to each other. This allows the adversary to

manipulate the exchanged messages between the two devices.

However, the adversary is unaware of two device’s secret pa-

rameters selected for OT and cannot manipulate the established

key in this way. In particular, any modification of the messages

between the two devices results in a significant difference

between their preliminary keys. This leads to the failure of

the key establishment and also exposes the adversary.

VI. EVALUATION

In this section, we evaluate the performance of WaveKey

with prototyped experiments.

A. Implementation

For evaluation purposes, we developed a prototype of

WaveKey utilizing a commodity RFID reader. For hardware,

we employed an Impinj Speedway R420 RFID reader with

one Laird S9028 antenna to collect RFID data. The reader’s

sample rate was set to 200 Hz, and it was connected to a

Dell Precision laptop for data processing. We used four mobile

devices, including a Google Pixel 8, two Samsung Galaxy 5

phones, and a Samsung Galaxy Watch, to collect IMU data

for evaluation. The evaluation involves 6 tags of three distinct

models as RFID devices, including two Alien 9640, two Alien

9730, and two SMARTRAC DogBone. Regarding software,

we implemented a mobile application to collect and process

IMU data and a Python application running on the laptop to

process the RFID data. We implemented and trained the two

autoencoders using PyTorch [38]. In addition, we recruited six

volunteers for our evaluation who are all graduate students.

B. Default Experiment Settings

Our evaluation defaulted to the following experimental

settings: the experiments were conducted in a laboratory room

devoid of any moving objects; the Samsung Galaxy Watch and

an Alien 9640 tag were employed as the mobile and RFID

devices, respectively; the volunteer tasked with performing

random gestures for key generation remained 5 m away

from the RFID antenna with an azimuth angle of 0◦. Unless

specified otherwise, these settings were consistently applied to

all subsequent experiments.

C. Hyperparameter Determination
The performance of WaveKey relies heavily on the ap-

propriate configuration of several important hyperparameters,

including the length lf of the feature vectors produced by

the two autoencoders, the quantization setting for key-seed

generation, and the time window τ . This section presents how

we determined the values of these hyperparameters through

rigorous experimentation.
1) lf : The factor lf influences the length and randomness

of the key-seeds, both of which are critical for the security

of WaveKey. A larger lf results in longer key-seeds that are

difficult for an adversary to guess. Paradoxically, a larger

lf also introduces more redundancy into the feature vectors,

which reduces the randomness of the key-seeds and thus

potentially compromises their cryptographic security. Our goal

is to configure lf in a way that balances the length and

randomness of the key-seeds for the optimal security.
In the experiment, we derived the value of lf through

model pruning. Specifically, we initially implemented and

trained the two autoencoders with lf = 50, which is sufficient

to fully capture the useful information from the input data

for key-seed generation. Next, we gradually reduced lf by

eliminating two neurons each time from the fully connected

layers of the two autoencoders, one from each. The neuron

removal followed an ascending order with respect to the

output variance of the neuron. In particular, we computed the

output variances of all these neurons using the training dataset

D and removed the neuron with the lowest variance as it

contained less useful information for the key-seeds. Following

each adjustment, we retrained the autoencoders with D and

recorded the loss calculated according to Eq. (3). We halted

the pruning process once the loss increased by more than 5%

after one round of adjustment, signifying that further pruning

would result in a significant loss of information during the

feature extraction process. Eventually, we configured lf as 12

and also obtained the corresponding well-trained autoencoders

for the subsequent experiments.
2) Quantization settings: As discussed in §IV-C, the num-

ber of quantization bins, denoted as Nb, is the only parameter

to be determined since all the elements to be quantized

follows the normal distribution. Nb is another hyper parameter

affecting the security of our scheme in a way similar to lf .

As with lf , a large Nb results in longer key-seeds that are

hard to guess for an adversary. However, it may also cause a

larger bit mismatch rate between SM and SR, which requires a

higher error correction rate η for the ECC code. According to

Eq. (4), a high η could undermine the robustness of WaveKey

against device spoofing and also increase the likelihood of a

successful attack via gesture mimicking, as the ECC would

tolerate a larger difference between the benign gesture and

the mimicry gesture.
To optimally configure Nb, we evaluated 12 values ranging

from 4 to 15 as Nb and selected the one that yielded the

best security. With each evaluated value, we first obtained the

corresponding η. Specifically, we measured the bit mismatch

rates between key-seeds SM and SR using the 14,400 samples
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in dataset D. For a desirable user experience, we designed

WaveKey to maintain a high key-establishment success rate

above 99%. To this end, we set the value of η to be higher

than the bit mismatch rate for 99% of the samples. Based on

this determined η, we calculated the success rate of random

guess with Eq. (4) and evaluated the success rate of gesture

mimicking through an experiment demonstrated in §VI-E.

Fig. 7 presents the results, clearly indicating that Nb = 9 is

the optimal setting, effectively thwarting both random guessing

and gesture mimicking.
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Fig. 7. Random-guessing and gesture-mimicking success rates.

3) τ : The parameter τ represents the allowable time delay

for the two messages MA,M and MA,R, and we determined

its value by measuring the time consumed in preparing these

messages. To do this, we used the four mobile devices and

the laptop to generate the two messages from the 14,400 data

records in D, recording their respective time consumption for

each data record. We found that all four mobile devices and

the laptop were able to prepare their messages within 100 ms

for every data record. Considering that the mobile device

and the RFID server communicate directly through short-

range communication technologies, the transmission delay is

negligible. Based on these observations, we set τ as 120 ms,

which provides sufficient time for the two benign devices to

get their messages ready without compromising the efficiency

of the key-establishment process. However, it is important to

note that an adversary attempting to forge the two messages

using advanced computer vision techniques would find it

extremely challenging to meet this tight deadline.

D. Randomness Test

This section evaluates the randomness of the established

key. Each of the six volunteers performed 200 random gestures

for this evaluation. All the data were collected in a static

environment which contributed negligible randomness to the

key-establishment. We generated a 256-bit key from each

gesture and pieced the 200 keys from the same volunteer

together to a sequence of 51,200 bits. We refer to such a

sequence as a key-chain. Since the key-seeds is also critical to

the system security, we pieced the 200 key-seed pairs with the

same volunteer into two sequences of 7,600 bits each, which

are referred to as key-seed-chains. The run test suggested for

randomness evaluation by NIST [39] was employed to evaluate

these sequences. The average and minimum p-values for the

six key-chains are 0.92 and 0.90, respectively. The average

and minimum p-values for the 12 key-seed-chains are 0.78 and

0.72, respectively. A p-value of 0.05 is commonly adopted as

a threshold for randomness text. Therefore, this result affirms

the high randomness of the key produced by WaveKey.

E. Security Evaluation

As analyzed in §V, WaveKey demonstrates high resilience

to eavesdropping, RFID signal spoofing, and Man-in-the-

Middle (MitM) attacks. Therefore, this section is dedicated to

evaluating the potential impact of device spoofing attacks, with

a specific emphasis on those that leverage gesture mimicking

and camera-aided data recovery.

1) Gesture mimicking: Our evaluation process proceeded

as follows. The six volunteers acted as the victims for 20 key-

establishment instances, performing 20 brief random gestures

each. The remaining five volunteers were tasked with mimick-

ing the victim’s gestures while holding mobile devices for data

collection. In total, we evaluated 600 mimicking instances.

For each mimicking instance, we generated key-seeds from

both the victim’s and the adversary’s IMU data and calculated

their bit mismatch rate. A mimicking instance was considered

successful if the bit mismatch rate was less than the ECC’s

error correction rate. In our experiment, all 600 mimicking

instances failed in device spoofing, providing strong evidence

of the robust security of WaveKey against this type of attack.

2) Camera-aided data recovery: We initially evaluated the

remote recording strategy for the device spoofing attack as

follows. A volunteer, designated as the victim, performed 200

random gestures for key establishment. During this process, we

recorded the victim’s gestures using an ALPCAM Webcam,

which boasts a high frame rate of 260 FPS and a resolution

of 1080p. This setup was chosen to emulate the optimal

recording fidelity an attacker might achieve with a hidden

camera. The camera was positioned to maintain a line-of-

sight view of the victim’s hand from a distance of three

meters. Subsequently, we implemented Complexer-yolo [35],

a sophisticated algorithm, to extract the 3D position of the

user’s hand from each captured video frame. Furthermore,

we calculated the instantaneous hand velocity for each frame

based on the change in hand position relative to the previous

frame, from which we derived the linear acceleration of the

mobile device. After deriving the key-seed, we proceeded

with the key agreement phase. The attack was considered

successful if a common key could be established. Out of the

200 attack instances, only 1 were successful, yielding a trivial

success rate of 0.5%. In addition, practical implementation

of this attack, which requires streaming high-resolution video

to a remote, powerful server for computationally intensive

image/video processing, introduces significant delays. These

delays prevent the adversary from obtaining a valid key-

seed within the required time window for subsequent key

agreement, rendering the remote recording strategy infeasible

for device spoofing against WaveKey.

We proceed to evaluate in-situ recording strategy for the

device spoofing attack with a Google Pixel 8 acting as the
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attacking device. In particular, the same volunteer was desig-

nated as the victim and performed 200 random gestures for key

establishment. The attacking device was positioned to maintain

a line-of-sight view of the victim’s hand from a distance of

three meters. Due to the constrained computing resources,

the attacking device was not able to perform the 3D hand

trajectory estimation in real-time. Instead, we implemented

YoloV5 [40] on the attacking device to extract the 2D location

of the user hand and trained a neural network to estimate

the linear acceleration of the mobile devices. Even with this

carefully designed attacking strategy, none of the 200 attacking

instances succeeded in obtaining a valid key-seed.

Our evaluation confirmed the high robustness of WaveKey

against all kinds of device spoofing attacks.

F. Generality Evaluation

This section assess the generality of WaveKey by evaluating

its performance across various experiment settings.

1) Environmental changes: Environmental changes can

have a significant impact on wireless signal propagation,

making it crucial to assess the performance of WaveKey in

different environmental settings. While all the experiments

were conducted in the same laboratory room, we varied the

location and orientation of the RFID reader to emulate four

distinct environments. WaveKey’s performance was evaluated

in each of these four environments under both static and

dynamic conditions. In the static condition, only the volunteer

performing the gesture for data collection was present in the

laboratory room. On the other hand, in the dynamic condition,

the other five volunteers walked around the RFID reader while

one volunteer performed the gesture for data collection. In

each environment setting, all six volunteers performed 50

random gestures, simulating 50 key-establishment instances.

The key-establishment success rates, denoted as Pk in the

different environment settings are shown in Tab. I, where the

static and dynamic conditions are abbreviated as S and D,

respectively. The results demonstrate that WaveKey’s perfor-

mance across different static environments was satisfactory

and remained stable. However, in the dynamic environment,

the key-establishment success rate dropped slightly. This is

mainly due to the dynamic environment introducing additional

variations to the RFID data, which may increase the bit

mismatch rate between a pair of key-seeds. Overall, WaveKey

proved to be robust against environmental changes.

TABLE I
KEY-ESTABLISHMENT SUCCESS RATES IN DIFFERENT ENVIRONMENTS.

Envr. 1 2 3 4
Condition S D S D S D S D

Pk 99.7 99.0 100 98.6 99.7 99.0 99.3 99.0

2) User’s relative position to RFID antenna: This ex-

periment aimed to assess the impact of the user’s position

relative to the RFID antenna on key generation performance.

A volunteer, designated as the user, conducted gestures for

key establishment in both static and dynamic settings. Initially,

with the azimuth angle set at 0 degrees, distances of 1, 3, 5,

7, and 9 meters from the user to the antenna were evaluated.

Subsequently, at a constant distance of five meters, azimuth

angles of -60, -30, 0, 30, and 60 degrees were assessed.

The user executed 400 gestures for each configuration: 200

in a static environment and 200 in a dynamic environment.

The corresponding success rates are presented in Tab. II. The

distance had negligible impact on key-establishment success

rate in static conditions. However, in dynamic environments, a

larger distance notably decreased success rates since the chan-

nel variations resulting from environmental changes and multi-

path effect are more pronounced. The azimuth angle showed

minimal influence on key generation in both environments.

TABLE II
KEY-ESTABLISHMENT SUCCESS RATES WITH DIFFERENT DEVICE

SETTINGS.

Distance (meter) 1 3 5 7 9
Static condition 99.5% 100% 99.5% 100% 99.5%

Dynamic condition 99.5% 99.5% 99% 99% 99%
Angle (degree) -60 -30 0 30 60
Static condition 100% 100% 99.5% 100% 99.5%

Dynamic condition 99.5% 99% 99% 98.5% 99%

3) Various mobile devices and RFID devices: This experi-

ment assessed the impact of inherent hardware imperfections

in the involved mobile and RFID devices on the key generation

performance. In particular, we evaluated all the 24 distinct

combinations derived from four mobile devices and nine

RFID tags. For consistency, a single volunteer executed 200

gestures for each combination under the default experiment

settings. The success rates corresponding to these device

settings demonstrated remarkable consistency, ranging from

a minimum of 99% to a maximum of 100%. These findings

underscore the adaptability and reliability of our scheme across

a wide array of devices.

G. Time Consumption

Lastly, we conducted an evaluation of the key-establishment

time consumption, which measures the time taken from the

start of the random gesture until a key is successfully estab-

lished. As the message transmission delay is negligible, the

key-establishment time consumption is calculated as the sum

of the computational time consumption and the 2 seconds

required to perform the gesture. To assess the performance

for different key lengths, we measured the key-establishment

time consumption for various key lengths, including 128 bits,

192 bits, and 256 bits for AES; 168 bits for 3DES; and 2048

bits for RC4. For each key length, we measured the average

time consumption using the 14,400 data records in dataset D.

The results are listed in Tab. III.

TABLE III
TIME CONSUMPTION FOR DIFFERENT KEY LENGTHS.

Key length (bit) 128 168 192 256 2048
Time consumption (ms) 2345 2332 2347 2357 2362
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Notably, the time consumption of key establishment did

not vary significantly for different key lengths. Even when

establishing a 2,048-bit key with WaveKey, the process took

only around 2.4 seconds. This highlights WaveKey’s high

efficiency, especially in generating long keys, making it well-

suited for practical applications that require secure and rapid

key establishment.

VII. CONCLUSION

This paper presented the design and evaluation of WaveKey,

an authenticated key-establishment scheme to enable secure

mobile ad hoc in-situ access to RFID-protected systems.

WaveKey explores a random gesture performed by the mobile

user to induce correlated IMU data and RFID signals at the

involved mobile device and RFID server, adopts deep learning

techniques to extract the complex cross-modal correlation,

and devises an OT-based key-negotiation protocol toward

secure and efficient key establishment. Theoretical analysis

and experimental evaluation confirmed the high security and

efficiency of WaveKey.
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