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Abstract— Ubiquitous smartphones can be powerful tools to access IoT devices. Proximity-based access control (PBAC) is needed
such that IoT devices only allow data access by legitimate users in close proximity. Traditional smartphone-based authentication
techniques do not satisfy the PBAC requirements. This paper presents SmartMagnet, a novel scheme that combines smartphones and
cheap magnets to achieve PBAC for IoT devices. SmartMagnet explores a few cheap, tiny commodity magnets which we propose to
attach to or embed into IoT devices, as well as the magnetometer and attitude sensor on commodity smartphones. Each legitimate
user performs a self-chosen 3D password gesture near the target IoT device with the enrolled smartphone. Then the system server
uses the IoT device’s confidential magnet configuration parameters to reconstruct the user gesture from the magnetometer and attitude
sensor data submitted by the smartphone. If the reconstructed gesture matches the stored template of the purported user, the
smartphone user is deemed legitimate and allowed access to the IoT device. Extensive experiments confirm the high usability of
SmartMagnet and its strong resilience to lost/stolen smartphones and also remote attacks via signal relaying.

Index Terms—IoT, smartphone, authentication, gesture recognition, magnet, security.

✦

1 INTRODUCTION

THE Internet of Things (IoT) is quickly reshaping the way
people gain digital insights about and interact with the

physical world. Cisco predicts that there will be 500 billion
IoT devices worldwide by 2030. Many IoT applications may
involve various users accessing and quickly acting upon the
data at nearby IoT devices. Given strong security concerns,
proximity-based access control (PBAC) is needed such that IoT
devices only allow data access by legitimate users in close
proximity [1]–[3]. Due to application contexts, form-factor
constraints, and cost considerations, many IoT devices such
as those in smart cities and industrial environments may
lack a user interface (UI) for inputting a user password. It
remains an open challenge to design a secure and usable
PBAC scheme for no-UI IoT devices.

Ubiquitous smartphones can be powerful tools to access
IoT devices with or without a UI. In particular, a legitimate
user, say, Bob, can enroll his smartphone with the IoT system
to access nearby IoT devices through WiFi/BLE/NFC. There
are three conventional authentication methods for mutual
authentication between Bob’s smartphone S and the IoT
device (say, D) he aims to access. The first method relies
on a pre-distributed shared key between S and D, but such
shared keys are knowingly very difficult to manage in a
large IoT system with many devices and legitimate users.
The second method explores public-key authentication by
assuming that S and D both have a certified pair of unique
public and private keys, but the involved overhead for
computations and public-key certificate revocations may be
too demanding for resource-constrained IoT devices. The
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third method uses the IoT system server as the authenti-
cation proxy which maintains a secure connection with S .
Each time Bob wishes to access D, he uses S to request
authorization from the server. After authenticating S , the
server distributes a session key to S and D for securing
subsequent communications between them. Note that the
third method or its variant has been widely used in practice,
e.g., to unlock Internet-connected smart locks [4].

Smartphone-based authentication methods above do not
satisfy the PBAC requirements. First, smartphones can be
lost/stolen, and many are protected by weak passwords
or even not password-protected. For instance, a Kensington
reports estimates that more than 70 million smartphones are
lost each year with only 7% recovered [5]; Kaspersky Lab
reports that 52% of people do not password-protect their
mobile devices [6]. Continue with the previous example. If
S is lost/stolen, an adversary may unlock it to impersonate
Bob to access D before Bob informs the server. The root
reason is that the authentication of a smartphone is falsely
considered equivalent to that of the corresponding user. In
reality, smartphones are typically used only as secondary
authentication factors, e.g., in a two-factor mobile authen-
tication system. Second, smartphones are vulnerable to the
remote attack where an adversary stealthily relays wireless
signals between smartphones and IoT devices far apart.
Therefore, an adversary possessing S or even Bob himself
(e.g., an insider attacker) can attempt to interact with D from
a remote location, e.g., to issue destructive commands while
avoid being caught on the spot. The root cause for this attack
is lack of proximity verification between S and D. One
may think about secure localization techniques to determine
precise smartphone locations, but such techniques often
require densely deployed access points which may incur a
prohibitive cost in a large-scale IoT system [7].

This paper presents SmartMagnet, a novel scheme that
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combines smartphones and cheap magnets to achieve PBAC
for IoT devices. SmartMagnet is motivated by the reed
switch widely used in door/window sensors in modern
alarm systems, which is paired with a permanent magnet
to detect door/window opening and closing according to
magnetic field changes. It explores one or a few cheap, tiny
commodity magnets which we propose to attach to or em-
bed into current and future IoT devices, as well as the mag-
netometer and attitude sensor on commodity smartphones.
The magnet configuration—including the magnet type, the
number of magnets, and their layout—is relatively unique
to each IoT device and results in a magnetic field difficult
to guess and emulate. To pass authentication, a legitimate
user performs a self-chosen 3D password gesture near the
target IoT device with the enrolled smartphone. Then the
system server uses the IoT device’s magnet configuration
to reconstruct the user gesture from the magnetometer and
attitude sensor data submitted by the smartphone. If the
reconstructed gesture matches the stored template of the
purported user, the smartphone user is deemed legitimate
and allowed access to the IoT device.

SmartMagnet offers strong resilience to lost/stolen
smartphones and also remote attacks. In particular, each
password gesture is designed to be easily reproduced by
the legitimate user but difficult for the attacker to guess
or emulate. So even if able to unlock a lost/stolen legit-
imate smartphone, the adversary can hardly perform the
correct password gesture. In addition, if the correct pass-
word gesture is performed with the legitimate smartphone
at a faraway location from the IoT device, the resulting
magnetometer and attitude sensor data only match the
surrounding magnetic field and are not compatible with that
of the IoT device. Therefore, the system server would not
be able to recover the right password gesture with the IoT
device’s magnet configuration. SmartMagnet thus defeats
remote attacks launched by the adversary (not) knowing the
password gesture and achieves true PBAC.

The major challenges to implement SmartMagnet in-
clude recovering the password gesture from the noisy mag-
netometer and attitude sensor data induced by the user’s
natural hand movement and then validating its authenticity.
We tackle these challenges in three steps. First, we apply
novel transformations to translate the smartphone’s moving
trajectory into a fixed coordinate system centered. Second,
we recognize the password gesture with the help of the
MyScript framework [8]. Finally, we validate the legitimacy
of the recovered password gesture with both Dynamic
Time Warping (DTW), traditional machine learning meth-
ods (Naive Bayes and Random Forest), and a three-layer
Convolutional Neural Network (CNN).

We conduct comprehensive experiments with commod-
ity magnets and iPhone 6s to verify the security and usabil-
ity of SmartMagnet. Our evaluations involve 12 volunteers
and over 720 samples. We show that SmartMagnet is highly
secure with the true-positive rates (TPRs) up to 91.5% and
96.3% and the false-positive rates (FPRs) no larger than 4.8%
and 3.5% for the DTW and CNN methods, respectively. We
also show that a brute-forth remote attacker needs at least
756,680 trials to guess and emulate the correct magnetic
field of the targeted IoT device equipped with only two
magnets. Since a practical PBAC system often rate-limits
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Fig. 1: SmartMagnet system architecture.

unsuccessful attempts, SmartMagnet can effectively thwart
signal-relaying attacks. In addition, the enrollment and au-
thentication time of SmartMagnet with both the DTW and
CNN methods are comparable to those of finger or face
authentication. Finally, a usability study based on the eval-
uation framework in [9], [10] confirms that SmartMagnet is
quite easy and convenient to use.

The rest of this paper is organized as follows. Section 2
gives the system and adversary models. Section 3 presents
our approach to reconstruct the user gesture from the noisy
magnetometer and attitude data. Section 4 illustrates the
SmartMagnet design. Section 5 presents the experimental
evaluation of SmartMagnet. Section 6 reviews the related
work. Section 7 concludes this paper.

2 SYSTEM AND ADVERSARY MODELS

System Model. As shown in Fig. 1, SmartMagnet com-
prises a system server, IoT devices, and smartphones regis-
tered by legitimate users. There are n ≥ 1 cheap, tiny com-
modity permanent magnets (less than U.S. $1.5 in our exper-
iments) in each IoT device. As shown in Section 5, n = 2 can
guarantee sufficient security. The magnet configuration—
including the magnet type, n, and their layout—is relatively
unique to each IoT device and defined by some parameters
(Section 3.2.3) stored on the server. Each IoT device commu-
nicates with the server through a secure channel.

We use Bob as an exemplary legitimate user to outline
the system operations and design requirements. Bob reg-
isters his smartphone S and installs a system app which
maintains a secure connection with the server. Bob protects
S with a usual password and also enrolls a self-chosen 3D
password gesture (Section 4.1) with the server. Assume that
Bob wants to interact with a nearby IoT device D through
a WiFi/BLE/NFC channel. Bob passes the PBAC if he is
verified to use S to perform the enrolled password gesture
around D. SmartMagnet achieves this in four steps.

1) Bob waves S to perform his password gesture around
D. The system app on S records and submits the
resulting magnetometer and attitude sensor data to the
server as a PBAC request to access D.

2) The server retrieves D’s magnet configuration from its
database, with which to extract a gesture trace from
received sensor data.
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Fig. 2: Illustrations of two-magnet magnetic field and recon-
structed trace in the smartphone coordinate system.

3) The server inputs the gesture trace into a coarse-grained
gesture recognition module and then a fine-grained user
identification module. The former module aims to rec-
ognize Bob’s password gesture, and the latter seeks to
verify that Bob indeed performs the gesture. Bob passes
the PBAC if both modules succeed.

4) The server distributes a session key separately to S
and D for them to establish a secure WiFi/BLE/NFC
connection for subsequent communications.

Adversary Model. We assume a powerful attacker who
possesses a legitimate smartphone whereby to cheat a target
IoT device. Although the smartphone can be password-
protected, it remains unlocked either because the password
is very weak to guess or because it is lost/stolen while in the
unlocked state. This means that the attacker can submit data
through the system app on the legitimate smartphone to
the server. The attacker is fully aware of how SmartMagnet
works and can launch both an in-situ attack near the IoT
device and a remote attack from a faraway location. For
both in-situ and remote attacks, we assume the worst-case
scenario that the attacker may have observed the legitimate
user’s password gesture either as a bystander or through a
spy camera. In addition, the remote attacker may also be the
legitimate user him/herself, e.g., as a malicious insider to
fake presence around the target IoT device in a workplace.

3 RECONSTRUCTING PASSWORD GESTURE

SmartMagnet requires each legitimate user to perform
his/her self-chosen password gesture by waving his/her
smartphone around the IoT device with embedded or at-
tached magnets. The smartphone then submits the resulting
magnetometer and attitude sensor data to the system server
which then reconstructs the performed gesture. In this sec-
tion, we outline our technique to achieve this purpose.

3.1 Magnetic Field Illustration
A magnet induces a 3D magnetic field vector (MFV) [11]
measured by a nearby magnetometer, which comprises the
magnetic field strength in three axes and is denoted by

H⃗(r⃗, m⃗) =
λ

|r⃗|3

[
3r⃗(m⃗⊤r⃗)

|r⃗|2
− m⃗

]
(1)
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Fig. 3: Magnetic field and attitude sensor readings when one
user performs letter “a” by waving his smartphone.

where H⃗(r⃗, m⃗) = (Hx, Hy, Hz), λ is a constant relating to
the magnetic moment, r⃗ = (rx, ry, rz) represents the mag-
net’s displacement vector relative to the magnetometer, and
m⃗ = (mx,my,mz) represents the unit orientation vector
pointing from the magnet’s south pole to its north pole. All
the vectors in Eq. (1) are measured in the magnetometer
(smartphone) coordinate system shown in Fig. 3a. The MFVs
induced by multiple magnets are simply the addition of in-
dividual MFVs. Fig. 2a gives an example with two magnets.
The overall x-axis MFV can be derived as

Hx=
λ1[−3r1,x(−m1,xr1,x−m1,yr1,y−m1,zr1,z)−m1,x(r21,x+r21,y+r21,z)]

(r21,x+r21,y+r21,z)
5/2

+
λ2[−3r2,x(−m2,xr2,x−m2,yr2,y−m2,zr2,z)−m2,x(r22,x+r22,y+r22,z)]

(r22,x+r22,y+r22,z)
5/2 .

(2)
The expressions of Hy and Hz are similar and omitted here
due to the space limit.

3.2 Password Gesture Reconstruction

The password gesture is equivalent to the trajectory of the
smartphone magnetometer and can be derived using r⃗ in
Eq. (1). We tackle this challenge in two steps.

3.2.1 Step 1: deriving unit orientation vector m⃗

The unit orientation vector m⃗ in Eq. (1) is measured in the
smartphone coordinate system which dynamically changes
with the smartphone movement. In contrast, the magnet
orientations are relatively fixed with regard to the IoT device
itself. So we need proper coordinate transformations to
map the magnet orientations to the varying smartphone
coordinate system to obtain m⃗. We use the attitude sensor
which has become a standard IMU sensor in mobile and
IoT devices to achieve this goal. The attitude sensor uses the
earth coordinate system, while the smartphone uses a 3-axis
coordinate system defined relative to the phone screen when
the smartphone is held in its default orientation. We assume
that the IoT device uses its local coordinate system defined
in the same way as the smartphone coordinate system.

Consider magnet 1 in Fig. 2a as an example. Let m⃗1,0

denote a unit orientation vector pointing to the north mag-
net pole in the IoT device’s coordinate system. Assume
that the attitude sensor in the IoT device outputs the yaw,
roll, and pitch angles denoted by α, β, and γ, respectively.
The transformation matrix from the IoT device’s coordinate
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system to the earth coordinate system can be defined as RT
1

where R1 is expressed as

R1 =

cosα − sinα 0
sinα cosα 0
0 0 1

 cosβ 0 sinβ
0 1 0

− sinβ 0 cosβ

1 0 0
0 cos γ − sin γ
0 sin γ cos γ

 .

(3)
With the smartphone’s attitude sensor, we can define a
similar matrix R2 from the earth coordinate system to the
smartphone coordinate system. Finally, we can derive the
unit orientation vector for magnet 1 in the smartphone co-
ordinate system as m⃗1 = R2R

T
1 m⃗1,0 and for other magnets

similarly, where RT
1 denotes the transposition of R1.

3.2.2 Step 2: deriving smartphone-displacement vector r⃗∗

We proceed to derive the magnet’s displacement vector r⃗ =
(rx, ry, rz) in the smartphone coordinate system. If there is
only one magnet, we can use m⃗ derived in Step 1 and the
magnetometer output H⃗(r⃗, m⃗) to obtain a unique closed-
form solution r⃗ to Eq. (1). If there are two magnets such as
in Fig. 2a, we obtain two unit orientation vectors m⃗1 and
m⃗2 in Step 1. In this case, Eq. (1) has two unknown vectors
r⃗1 = (r1,x, r1,y, r1,z) and r⃗2 = (r2,x, r2,y, r2,z), and there are
no closed-form solutions. But we can rewrite r⃗2 as

r⃗2 = (r1,x, r1,y, r1,z) + d(1,2) ∗ (m(1,2),x,m(1,2),y,m(1,2),z),

where m⃗(1,2) = (m(1,2),x,m(1,2),y,m(1,2),z) denotes the unit
orientation vector from magnet 1 to magnet 2, and d(1,2) is
the distance between the magnet centers. Both m⃗′

1,2 (sim-
ilar to m⃗1,0 in Eq. (3)) and d(1,2) can be obtained during
manufacturing and preloaded to the system server. Then
we have m⃗(1,2) = R2R

T
1 m⃗

′
1,2. This process can be similarly

performed for three or more magnets. Given the knowledge
of orientation vectors, the equation set, consisting of Eq. (2)
and the corresponding expressions of Hy and Hz , could
be solved using the classical Levenberg-Marquardt (LM)
algorithm–a popular numerical method for nonlinear least-
squares problems–with only three variables [r1,x, r1,y, r1,z].

Finally, we define a magnet coordinate system centered
at an arbitrary magnet (e.g., magnet 1 in Fig. 2a) with axes
parallel to the earth coordinate system. Then we use its
displacement vector r⃗1 and the transformation matrix R2

used in Step 1 to obtain the magnetometer displacement
r⃗∗1 (i.e., the 3D gesture trajectory) in the magnet coordinate
system. In particular, we compute

[r∗1,x, r
∗
1,y, r

∗
1,z]

T = RT
2 [r1,x, r1,y, r1,z]

T . (4)

Fig. 2b gives an example of trace reconstruction. When
the smartphone moves from one point Ot1 at t1 to another
point Ot2 at t2, we can derive two displacement vectors
for magnet 1 as r⃗1

t1 and r⃗1
t2 in the smartphone coordinate

system, which are then mapped into the magnet coordinate
system based on the aforementioned process. As we can
see, the point trajectory Ot1 99K Ot2 changes its direction
to the opposite. However, this change does not affect the
final trace recovery because the new and original trajectories
are symmetric about the origin of the magnet coordinate
system. The later gesture recognition and user identification
phases in SmartMagnet only depend on the shape of the
gesture trace without using its direction.

3.2.3 Magnet configuration parameters

The system server needs some critical parameters to recon-
struct a gesture trace according to the process above. These
include the number n of magnets, the magnetic constant of
each magnet (e.g., λ1 in Eq. (2)), the individual orientation
vector of each magnet like m⃗1,0, the distance (e.g. d(1,2))
between the origin magnet and another magnet, and the
unit orientation vector (e.g., m⃗′

1,2) from the origin magnet
to another magnet. These parameters define the relatively
unique magnetic environment of each IoT device and are
kept confidential to the system server.

4 SMARTMAGNET DESIGN

In this section, we illustrate the SmartMagnet framework
which consists of an enrollment phase and a verification
phase, as shown in Fig. 4.
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Fig. 4: SmartMagnet Workflow.

4.1 Enrollment Phase

In the enrollment phase, each legitimate user needs to select
a proper password gesture easy for him/herself to remem-
ber and reproduce (high usability) but difficult for the
attacker to emulate (high security). The authors in [12] first
discretize a 2D gesture, then use the similar representation
of PIN numbers with the n-gram Markov Model, and finally
refer to the partial guessing entropy estimation [13]. If the
discretized gesture is complex, the original gesture is also
considered complex. SmartMagnet could follow a white list
of good gestures in [12] which achieve the usability and
security at the same time properly.

Then the user opens the SmartMagnet app and starts
to perform the chosen gesture as what s/he would do in
subsequent verification phases. It is worth noting that in a
large system of IoT devices connected to the same server,
the user just needs to enroll with an arbitrary IoT device but
can use the same gesture with any other. This nice feature
also translates into the high usability of SmartMagnet. The
SmartMagnet app records and then submits the resulting
magnetometer and attitude sensor data to the system server
which reconstructs the password gesture (or smartphone
trace) with the techniques in Section 3. Next, the recovered
3D trace goes through the following steps in sequence.
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(a) Before rotation and translation (b) After rotation and translation

Fig. 5: Mapping from 3D to 2D space.

4.1.1 Cancelling environmental magnetic field
Before trajectory recovery, we first cancel the impact of
environmental magnetic field (EMF) [14]. We denote the
EMF recordings as Hmag′ = (Hmag′,x, Hmag′,y, Hmag′,z) in
the earth coordinate system. Then the real-time EMF values
recorded by the magnetometer in the smartphone can be
obtained using the following equation,

[Hmag,x, Hmag,y, Hmag,z]
T = R2[Hmag′,x, Hmag′,y, Hmag′,z]

T .
(5)

Here R2 is the rotation matrix defined in Section 3.2.1. After
receiving the readings from the magnetometer and attitude
sensor, the system server simply subtracts the EMF values.

4.1.2 Mapping from 3D to 2D space
We map the 3D smartphone trace into the 2D space for easier
recognition and verification later on. The first step maps the
points on the trace into a 2D plane, which can be derived
with linear polynomial surface fitting. This mapping is fea-
sible, as simple gestures such as letters performed by most
people usually lead to trace points almost in one plane. If the
password gesture is complex such as a string of letters, this
mapping process could be easily conducted after gesture
segmentation. Then we rotate the 2D mapping plane into the
X-Y plane of the 3D space because the mapping plane can
be different each time the user performs the same gesture.
Fig. 5 shows the mapping result.

4.1.3 Preprocessing
Since people cannot perform exactly the same gesture every
time, we further preprocess the 2D trace for better recogni-
tion and verification performance in four steps.
Resampling. Each gesture trace is sampled at a fixed rate,
say 100Hz in our implementation. But the various move-
ment speeds in different authentication instances result in
diverse distributions of the sampling points. So we resample
the gesture trace to obtain a new trace with 100 equidistant
points. To accommodate the instability at the beginning and
end of the gesture input, we remove several points (e.g.,
three in our experiments) in both ends of the 100-point trace.
Orientation invariance. To offset the bias caused by
various gesture-input orientations, we rotate the resam-
pled trace into a fixed orientation with the first method
in [15]. We rotate the gesture until the direction vector
[xn − x1, yn − y1], directed from the first point to the last,
is parallel with the X-axis using point rotation method,
i.e., [x′, y′]T = [cos θ − sin θ; sin θ cos θ] ∗ [x, y]T , where
θ = − arctan ((yn − y1)/(xn − x1)).
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Fig. 6: Illustration of the preprocessing procedures.

Location invariance. It is nearly impossible for the same
user to input his password gesture at the same position each
time. To provide gesture-location invariance, we further
shift the rotated trace to make the minimum X-coordinate
and Y-coordinate among the trace points both non-negative.
Scale invariance. Users rarely input their gestures in ex-
actly the same size each time. So we scale the trace by
dividing the sequence of X-axis and Y-axis values using
their maximum values, respectively [15], [16]. Thus the
trace points are bounded by a square box [0,1]. The overall
preprocessing procedures are shown in Fig 6.

4.1.4 Gesture recognition
A usable password gesture can comprise standard digits,
diagrams, and letters similar to those in handwritten sig-
natures. So the gesture input can be considered similar
to signing in the air. We further require that each user’s
password gesture consist of a unique combination of digits,
diagrams, and letters just like a computer password. So we
can explore the efficient MyScript framework [8] to recog-
nize individual digits/diagrams/letters from the processed
2D trace. The recognition result is stored at the system server
for later authentication phases. Our preliminary evaluations
show that the MyScript recognition accuracy for a letter-
shape gesture is almost 100% for both one-magnet and two-
magnet configurations, as shown in Fig. 7.
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Fig. 7: Accuracy of gesture recognition using MyScript.

4.1.5 User identification
Gesture recognition relates to the traditional something-
you-know authentication paradigm and can be enough for
IoT applications without strong security requirements. But
it can only provide coarse-grained user identification and
is insufficient for security-critical IoT applications. So we
further design the fine-grained user-identification module
executed solely or after a successful gesture recognition.
This module corresponds to the conventional someone-you-
are authentication paradigm and trades off higher compu-
tational overhead for strong resilience to the adversary who

Authorized licensed use limited to: ASU Library. Downloaded on July 15,2022 at 15:52:55 UTC from IEEE Xplore.  Restrictions apply. 



1536-1233 (c) 2021 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.

This article has been accepted for publication in a future issue of this journal, but has not been fully edited. Content may change prior to final publication. Citation information: DOI 10.1109/TMC.2022.3149746, IEEE
Transactions on Mobile Computing

6

observes the user’s password gesture through shoulder-
surfing attacks or a spy camera. We consider and compare
the DTW, traditional machine learning methods, and CNN
methods for user identification in this paper.
DTW. Each legitimate user performs the password gesture
a few times during the enrollment phase, leading to multiple
processed 2D traces (or samples). We select the reference
sample for the user as the one that has the minimum
average DTW distance between itself and all the others. The
system server is preloaded with the gesture traces of many
random users as the training data. Then we compute the
DTW distance between the reference sample and each other
sample in the train data, where the samples from this user
and other users are considered ground-truth positive and
negative instances, respectively. Next, we obtain the optimal
DTW classification threshold by maximizing the statistical
F-1 score which is the harmonic mean of precision and recall.
Traditional machine learning. We tested the performance
of SmartMagnet with popular classifiers including SVM,
Naive Bayes (NB), KNN, and Random Forest (RF), and
found that NB and Random Forest (RF) led to comparably
better results. For both NB and RF, we first initialize 15
features in Table 1 to characterize the trajectory data. Then
we apply the features in [17] (slope angle, path angle, and
curvature) to represent the geometrical characteristics of the
2D movement trajectory.

TABLE 1: List of initialization features.

Feature Description

Distance dxy(i) =
√

(xi+1 − xi)2 + (yi+1 − yi)2

Velocity {vx,i =
xi+1−xi

ti+1−ti
}N−1
i=1

{vy,i =
yi+1−yi
ti+1−ti

}N−1
i=1

Acceleration {accex,i =
vx,i+1−vx,i

ti+1−ti
}N−1
i=1

{accey,i =
vy,i+1−vy,i

ti+1−ti
}N−1
i=1

Slope Angle {accex,i =
vx,i+1−vx,i

ti+1−ti
}N−1
i=1

Path Angle alphaxy(i) = arccos
p⃗(t)·p⃗(t+1)

||p⃗(t)||∗||p⃗(t+1)|| ,
p(i) = [xi−1 − xi; yi−1 − yi]

Curvature kxy(i) =
|vx,i∗accey,i−vy,i∗accex,i|

(v2
x,i+v2

y,i)
(3/2)

,

logkxy(i) = log(1/kxy(i))

Hu Invariant Moments Mi(µj,k), i = 1, 2, ..., 7,
µj,k =

∑
x

∑
y(x− x̄)j(y − ȳ)k,

j, k ∈ {0, 1, 2, 3}

In the next step, we convert each feature vector into a
scalar using the root-mean-square (RMS) metric. Consider
the velocity feature vector {vx,i}N−1

i=1 for the X-axis as an ex-
ample. Let {vx,i}N−1

i=1 denote the averages of multiple legiti-
mate training samples for the same gesture. The RMS value

of {vx,i}N−1
i=1 is computed as

√
1

N−1

∑N−1
j=1 (vx,j − vx, j)2.

Finally, we obtain a scalar vector of 8 RMS values and 7
Hu-invariant moment values, one for each feature.
CNN. We also use a standard three-layer CNN. Each con-
volutional layer consists of a batch normalization layer, a
Rectified Linear Unit (ReLU) activation layer, and a dropout
layer. These layers extract features from the processed 2D
traces, which are fed to a max-pooling module and then
a fully connected (FC) layer. Finally, we use the sigmoid
function to make a decision.

There are two remarks to make. First, all the models can
be dynamically retrained on the availability of new training
data. Second, any combination of the three models can be
used, which depends on the system’s security need.

4.2 Verification Phase
Suppose that someone interacts with an IoT device with
the legitimate smartphone of a purported user. The user
performs the password gesture with the smartphone which
then submits the resulting magnetometer and attitude data
to the server. The same workflow in Fig. 4 is then ex-
ecuted. The user is considered illegitimate if failing to
pass the gesture-recognition module. Otherwise, the user-
identification module is also invoked, in which any combi-
nation of the three models can be used. The user is consid-
ered legitimate if all the invoked modules yield successful
results, in which case the last step of the system workflow
outlined in Section 2 is executed to assign a session key
between the IoT device and the smartphone. To tolerate
inputting errors, the system may allow a threshold number
of failed attempts in a short time window.

5 PERFORMANCE EVALUATION

5.1 Experimental Setup
We prototype SmartMagnet with the following hardware.
The smartphone is an iPhone 6s, and the system server is
a Dell desktop with 3.19 GHz CPU, 16 GB RAM, and Win-
dows 10 64-bit Professional. We emulate both one-magnet
and two-magnet IoT devices. Each magnet is NdFeB, Grade
N40, 12.7mm*12.7mm*3.2mm (block shape), costing U.S.
$1.5 at Amazon.com. The magnets are placed on a table and
fully covered by standard printer paper.

Our experiments involve 12 volunteers, all of whom
are college students aged above 18. Each volunteer is
required to perform his/her gestures within a given
20cm*20cm*20cm space centered around the magnet(s), em-
ulating the practical scenario. Although there are plenty of
options for a password gesture, we report the results with
four low-case letters—a, b, c, and d—which have different
complexity and shapes. Experiments of other gesture types
are omitted for lack of space. Every volunteer inputs each
letter gesture 15 times, leading to 720 samples in total. Each
sample contains a timed sequence of 3-axis magnetometer
readings and a sequence of 3-angle attitude readings. Since
all our volunteers have the same choices of gestures, we ac-
tually evaluate the worst-case performance of SmartMagnet.

We evaluate the resilience of SmartMagnet to both
signal-relaying and in-situ attacks per the adversary
model in Section 2. Performance metrics include the true-
positive rate (TPR), false-positive rate (FPR). Denote the
number of true-positive, false-positive, true-negative, and
false-negative samples by #TP, #FP, #TN, and #FN. We
have TPR=#TP/(#TP+#FN), FPR=#FP/(#FP+#TN), and ac-
curacy=(#TP+#TN)/(#TP+#FP+#FN+#TN).

5.2 Resilience to In-Situ Attacks
To emulate in-situ attacks, for each of the four letters, we
randomly choose 10 samples from each volunteer and 10
from each other volunteer for the training, and the rest
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Fig. 8: SmartMagnet’s resilience to in-situ attacks with the DTW method.

other 160 samples are used for testing. We use 5-fold cross-
validation and compute the average results which are quite
similar for different one-magnet and two-magnet config-
urations. Below we report the results for a random one-
magnet configuration and the 4th two-magnet configuration
in Table 5, unless specified otherwise.

Fig. 8 shows the average result with the DTW method.
From Fig. 8a, the TPRs for “a” and “d” are above 90%, while
those for “b” and “c” are lower but still near 85%. After a
further inspection, the reason is that the starting part of “b”
and the whole “c” are both unclosed shapes, resulting in the
large variation of the same user’s gestures. Fig. 8b shows
that the FPRs for all four letters are below 10%, confirming
the resilience of SmartMagnet to in-situ attacks. Fig. 8c and
Fig. 8d demonstrate very high accuracy of all letters (greater
than 95%) and also low identification-error rates (mostly less
than 10%) covering both false negatives and positives.

We also evaluate the authentication performance in three
environments (lab, mall, and home). Each user is required
to input Letter d and the results are shown in Fig. 9a.
In most scenarios, the authentication accuracies are above
90%. Besides, the performance in the lab is worse than that
in the other two environments due to the magnetic field
interference induced by various electromagnetic devices. In
addition, one-magnet configuration and two-magnet with
orderly layouts perform better than complex magnet layouts
because the former could generate a relatively simple and
symmetric magnetic field which benefits the derivation of
the gesture trace. Moreover, the result also verifies that the
user can use the same gesture as any other IoT device.

Fig. 9b shows the impact of the distance d(1,2) between
magnets 1 and 2. If d(1,2) is too large, the magnetic field
generated by one magnet dominates the whole field when
the user inputs the gesture near it, while the other magnet
almost plays no role on magnetometer readings. If d(1,2) is
too small, the resulting magnetic saturation would affect the
performance as well. Therefore, there may exist an optimal
d(1,2) distance value which is to be studied in future work.

TABLE 2: Performance of DTW, NB, RF, and CNN.

one-magnet two-magnet
TPR FPR accuracy TPR FPR accuracy

DTW 0.915 0.048 0.946 0.913 0.045 0.947
NB 0.926 0.015 0.949 0.927 0.011 0.958
RF 0.942 0.030 0.955 0.931 0.026 0.961
CNN 0.963 0.035 0.978 0.960 0.024 0.981
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Fig. 9: Impact of environments and magnet distances.

TABLE 3: Accuracy comparison of DTW, NB, RF, and CNN
with various training samples.

training samples 5 6 7 8 9 10
DTW (one-mag) 0.887 0.904 0.921 0.925 0.935 0.946
NB (one-mag) 0.912 0.927 0.931 0.938 0.944 0.949
RF (one-mag) 0.924 0.939 0.942 0.947 0.952 0.955
CNN (one-mag) 0.953 0.968 0.970 0.973 0.977 0.978
DTW (two-mag) 0.906 0.918 0.922 0.923 0.931 0.947
NB (two-mag) 0.917 0.932 0.938 0.943 0.949 0.958
RF (two-mag) 0.926 0.949 0.953 0.956 0.959 0.961
CNN (two-mag) 0.955 0.971 0.974 0.976 0.980 0.981

Table 2 compares the classification performance of DTW,
Naive Bayes (NB), Random Forest (RF), and CNN. The
TPRs and accuracies of all methods are above 90% with the
FPRs below 5%. CNN has the best overall performance at
the cost of slightly larger computational overhead shown
in Section 5.5. In addition, the performance of all methods
improves as the number of training samples increases, as
shown in Table 3. We also do not observe obvious perfor-
mance differences with various password gestures and thus
omit the results for simplicity.

We further test the SmartMagnet performance with more
complicated password gestures by using the words “rug”
and “boat” in the white list of gestures in [12]) as examples.
Fig. 10 illustrates their 2D trajectories after preprocessing in
SmartMagnet. From Fig. 10b, we can see that the gesture
trajectories are similar for the same user and quite diverse
for different users. Fig. 11a shows the TPRs for “rug” and
“boat” both above 90%. In particular, NB, RF, and CNN
achieve significantly higher TPRs than DTW because DTW
utilizes only one feature (i.e., the DTW distance of two
samples) that incurs more errors when the gestures are
complex. In addition, Fig. 11b shows that the FPRs are below
5% for all four classification methods and below 3% except
DTW, confirming the higher resilience of SmartMagnet to
in-situ attacks with more complex gesture passwords.
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Fig. 11: Resilience to in-situ attacks with complex gestures.

5.3 Resilience to Remote Attacks

A remote attacker seeks to use the legitimate smartphone
(lost or stolen) to access the target IoT device from a faraway
location through stealthy wireless signal relaying. To pass
the authentication, the attacker holds the smartphone to
perform the victim’s password gesture around an emulated
magnetic field of the target IoT device. The magnetometer
and attitude sensor data submitted to the system server
relate to the emulated magnetic field. So the remote attack
is successful only if two conditions are both satisfied: (1)
the performed gesture closely match the legitimate one, and
(2) the emulated magnetic field resembles the authentic one
of the target IoT device. The remote attacker may guess
the legitimate gesture to satisfy the first condition, but the
results in Section 5.2 have confirmed that a random gesture
has a little chance to be classified as legitimate by the
server. In this section, we assume the worst-case scenario
that the first condition is satisfied, which happens if the
remote attacker can observe the victim’s gesture-input pro-
cess to do extensive practices or can be the legitimate user
him/herself as a malicious insider (e.g., attempting to fake
the presence at the work site). So we focus on evaluating the
(in)feasibility of satisfying the second condition.

We emulate the remote attack as follows. According to
Section 3.2.3, the reconstruction of the gesture trace needs
some critical parameters that define the relatively unique
magnetic environment of each IoT device. If the attacker can
use his/her own magnets to generate these parameters and
thus successfully emulate the authentic magnetic field, the
remote attack succeeds. Our subsequent evaluations report
the impact of each individual parameter by fixing other
parameters for one-magnet and two-magnet scenarios.
Impact of unit orientation vectors. In this experiment, we
assume that the remote attacker has the same magnet(s) in
the target IoT device but does not know the magnet layout

hidden inside the IoT device. The attacker can freely rotate
all the magnets to eventually change their unit orientation
vectors and relative orientations in the smartphone coordi-
nate system, e.g., m⃗1 and ⃗m(1,2) in Fig. 2. Below we only
report the DTW-based results due to space constraints, as
other classification methods yield similar results.

We first assume that the attacker rotates magnet 1 to only
change the yaw angle of m⃗1 from −170◦ to 180◦ with an
interval of 10◦. The rotation also changes the yaw angle of
m(1,2) in the two-magnet setting. Each volunteer mimics a
remote attacker and performs each of the four letter gestures
under each raw angle, leading to 36 gesture samples per
letter. We further assume that the correct m⃗1 corresponded
to 0◦, so each volunteer generates 35 attack samples per
letter gesture for both one-magnet and two-magnet settings.

Fig. 12 shows the impact of the remote attack. As we can
see in Fig. 12a, the number of successful attack samples de-
creases from the center 0◦ to both the left and right because
a larger degree change induces more significant deviations
from the authentic gesture trace. To quantitatively measure
the remote-attack strength, we define a new metric—called
degree range–to denote the degree interval centered at 0◦ in
which there exist one or more successful attack samples.
Fig. 12b plots the degree range for a randomly chosen vol-
unteer. When the degree change reaches −40◦ to the left and
50◦ to the right, the number of successful attacks samples is
zero. So the degree range of this user is from [30◦, 40◦]. We
also show the average degree range for each letter for both
one-magnet and two-magnet configurations in Fig. 12c. The
average degree ranges for “a”, “b”, and “d” are all below
80◦, while that for “c” is higher because the trajectory of
“c” is too simple to have significant deviation with the
degree change. Therefore, legitimate users are encouraged
to choose more complex gestures. In addition, Table 5 shows
that the average degree ranges with one magnet are smaller
than those for two magnets, which is expected.

Based on the degree-range statistics above, we can es-
timate the number of brute-force trials for a successful
remote attack. According to Fig. 2 and Section 3.2, the trace
reconstruction is affected by m⃗1, m⃗2, and ⃗m(1,2) for two
magnets. The impacts of m⃗1 and m⃗2 are similar for the
same degree change, while that of ⃗m(1,2) is larger because
it appears on the denominator to derive r⃗2. For simplicity,
we assume that m⃗1, m⃗2, and ⃗m(1,2) have the same impact.
As reported above, the average degree range for the yaw
angle is 80◦, which divides 360◦ into equal-width ranges
where the reconstructed traces are considered similar. Since
the yaw, roll, and pitch angles of each orientation vector can
be freely adjusted, a brute-forth remote attacker needs to try
at least (360/80)9 ≈ 756, 680 times for two magnets and
(360/80)3 ≈ 91 times for one magnet. These results verify
SmartMagnet’s high resilience to the remote attack, espe-
cially when a practical IoT system rate-limits unsuccessful
authentication attempts. Intuitively speaking, more magnets
can construct a more complex magnetic field involving more
parameters and much harder to crack.

Fig. 13 shows the number of successful attack samples
for Letter “a” when the remote attacker could change only
the yaw angle, yaw and roll angles, and all three angles of
magnet 1. A smaller degree range corresponds to a lower
probability of success. It is clear that multi-angle changes
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Fig. 12: Resilience to the remote attack.

would weaken the attack strength due to accumulated er-
rors, which is consistent with our conjecture. So it is in the
best interest of the remote attacker to only change one angle,
say the yaw angle for Fig. 12. Equivalently speaking, we
have emulated the most powerful remote attack above.
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Fig. 13: Number of successful attack samples for letter “a”
as the remote attacker changes different angles.

We further evaluate the impact of different two-magnet
configurations in Table 5 and show the results in Fig. 12d.
It is clear that orderly magnet layouts would result in
worse resilience to the remote attack. The reason is that
such orderly magnet layouts generate a relatively simple
and symmetric magnetic field, which tends to smooth the
variation of magnetometer readings in Eq. (2) caused by the
degree change.
Impact of magnet material, size, and shape. The indi-
vidual magnetic constant for each magnet (say, λ1 and λ2

in Eq. (2)) depends on the material, size, and shape of
each magnet. Such constants affect the induced magnetic
field strength (MFS) and thus the field distribution, espe-
cially for multiple-magnet configurations. Fig. 14 shows
the average 3-axis MFS of the chosen magnets in Table 4,
where the enclosed number following each magnet type
indicates the magnitude of the 3D MFS vector. The larger
the MFS magnitude, the stronger the corresponding magnet.
So the MFS indeed relates to different materials, grades, and
volumes under the same environmental conditions like heat,
humidity, and radiation.

We have four particular observations which are quite
consistent for each testing position. First, the magnet ma-
terial is critical to the induced MFS. In our experiment,
neodymium magnets always induce stronger MFS than ce-
ramic ones with a similar volume. This result coincides with
the common viewpoint that neodymium magnets are much
stronger than ceramic ones. In addition, ring-1 and ring-
2 ceramic magnets have the same volume, but the ring-1
magnet has a higher grade and thus always induces stronger
MFS. Second, the volume of a magnet is proportional to

its induced MFS, which can be easily observed, e.g., by
comparing the MFS data of disc-1 and disc-2 magnets or
those of disc-3 and ring-1 magnets. Third, the farther a
magnet from the magnetometer at the upper-left corner of
the used iPhone 6+, the weaker the induced MFS. Last,
the magnet shape is less important for the induced MFS.
In particular, disk-1 and bar magnets have the same ma-
terial and similar volumes, leading to similar MFS despite
their different shapes. So the magnets of the same material
and similar volumes cannot be well distinguished by their
induced MFS. To further validate the last observation, we
test four rectangular magnets in the same batch and observe
almost identical MFS at the same position.

TABLE 4: Magnets of various materials, grades, volumes,
and costs.

magnet material grade vol. (mm3) cost (US $)
disc 1 NdFeB N45 7236 3.50
disc 2 NdFeB N45 4824 2.35
bar NdFeB N45 7200 3.50
disc 3 ceramic C5 4824 1.50
ring 1 ceramic C8 6839 2.00
ring 2 ceramic C5 6839 3.00

To sum up, the magnets of different materials and vol-
umes are quite distinguishable by their induced MFS, but
those of the same material and similar volume have less
unique magnetic properties. Therefore, we can greatly boost
SmartMagnet’s security strength by considering the mag-
netic properties of various magnets when selecting internal
magnets for IoT devices.
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Fig. 14: MFS of different magnets at the same position
relative to the smartphone magnetometer.

5.4 Usability-Deployment-Security (UDS) Studies

We use the Usability-Deployability-Security (UDS) frame-
work proposed in [9], [10] to evaluate the usability of
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TABLE 5: Different two-magnet configurations for Fig. 2a.

Configurations Description
Configuration 1 m⃗1, m⃗2, and ⃗m(1,2) are aligned.
Configuration 2 m⃗1 and m⃗2 are aligned, but ⃗m(1,2) has one angle

deviated by 90◦.
Configuration 3 m⃗1 and ⃗m(1,2) are aligned; m⃗2 has one

angle deviated by 90◦.
Configuration 4 m⃗1, m⃗2, and ⃗m(1,2) are not aligned in pairs.

SmartMagnet. For comparison with other representative au-
thentication schemes, we only use the relevant terms of the
UDS framework. Specifically, Table 6 lists 18 UDS benefits
and rates different schemes by determining if they satisfy
these benefits.

Similar to other authentication schemes based on pass-
words or touch gestures, SmartMagnet requires the user to
remember a self-chosen secret and perform it during the
login process. This feature enables users to dynamically
change their secrets, thus making SmartMagnet resilient to
phishing attacks. In contrast, traditional face and fingerprint
recognition schemes provide more convenience to users
while exposing users to both phishing and smudge attacks.
For example, there has been a lot of news on successful
hackings of fingerprint and face scanners on both Android
and iOS devices. Besides, the authentication schemes based
on alphanumerical passwords, patterns, PINs, and touch
gestures all require a UI which is unavailable on many IoT
devices; the UI requirements are not friendly to senior citi-
zens, children, and people with cognitive disabilities either.
In contrast, SmartMagnet applies to no-UI IoT devices and
explores ubiquitous commodity smartphones. Therefore, we
place SmartMagnet into the “somewhat offering” category
for the Nothing-to-Carry benefit. SmartMagnet also has a
lower false reject rate (i.e., Infrequent-Errors) when compared
with face and fingerprint recognition schemes. The reason
is that face or fingerprint recognition needs to explore
complex feature metrics to balance the inter-variance of
different users and the intra-variance of the same user. By
comparison, SmartMagnet could utilize complex gestures to
augment the inter-variance, resulting in more reliable and
robust authentication performance. Finally, SmartMagnet
outperforms other schemes in terms of security benefits. To
sum up, the analysis above verifies that SmartMagnet could
simultaneously offer good usability and high security.

5.5 Computation Time
We also evaluate the computation time of SmartMagnet.
The one-time enrollment time for inputting five gestures
is less than 11 s which is comparable with that of finger
or face recognition on smartphones. In addition, we train
the classifier on a Dell desktop with 3.19 GHz CPU, 16 GB
RAM, and Windows 10 64-bit Professional. The training and
authentication time is less than 1 s for the DTW method
and traditional machine learning methods, and less than 2 s
for the CNN method. So the computational performance of
SmartMagnet is quite acceptable in practice.

6 RELATED WORK

There is extensive work (e.g., [21]–[24]) on using the mag-
netometer for text entry or interaction with mobile devices.

TABLE 6: Usability-deployment-security (UDS) evaluation.
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= ”offer” the benefit, = ”somewhat offer” the benefit, and no
circle = ”does not offer” the benefit.

In [21]–[23], researchers proposed to embed magnets in the
writing pen or stylus for input/interaction. They utilized
the association of magnets and the magnetometer installed
in the mobile device. In addition, the authors in [21],
[23] designed a new kind of wearable devices attached to
magnetic sensors for 3D interaction and localization in a
magnetic field environment. These methods require a large
array of magnetic sensors to achieve localization which
may not be possible for many applications. In contrast, our
SmartMagnet utilizes the attitude sensor in the smartphone
to assist the smartphone magnetometer for the localization,
which can broaden the application scope. Authors in [24]
proposed to monitor the movement of one driver’s hands
during driving by tracking the magnet attached in one hand
with his smartwatch worn on the other hand. Their scheme
assumes that the smartwatch is static while the magnets are
moving. In contrast, the smartphone moves around the fixed
magnets in our context, so we designed novel techniques to
reconstruct the smartphone trajectory.

Researchers have also explored the magnetometer for
user authentication. The authors in [25] let a user draw
3D signatures around the mobile device with a magnet and
then authenticated the user. The authors in [26] investigated
the possibility of 3D gesture authentication using multiple
magnetic sensors deployed in advance. Besides, the authors
in [27] studied the fingerprint hidden in the raw readings of
sensors in the smart device such as gyroscope and magne-
tometer which utilizes the manufacturing imperfection. As
far as we know, some device manufacturers have prohibited
access to raw sensor data to avoid their illegitimate use.
Overall, these papers studied the applicability of magne-
tometers on user authentication in a totally different appli-
cation context from ours.

Significant research has been done for gesture-based
authentication. In [28] and [29], the authors used the chan-
nel state information (CSI) of surrounding RF signals to
recognize gestures and authenticate legitimate users. Their
schemes require pre-deployed APs which may incur a pro-
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TABLE 7: Comparison of different gesture-tracking systems.

Technical DOF of Tracking Tracking System
basis Tracking Error Objectives Deployment
WiFi 3 5cm finger APs

WiDraw [30]
RF 3 3.7cm tags RFID devices

RF-IDraw [38]
sound 1&2 3.5/4.6mm finger speakers and

LLAP [39] microphones
vision 3 mm-level finger Microsoft

Kinect [40] KINECT
vision and RFID 3 10.33mm tags cameras and
TagVision [41] RFID devices

IMUs 3 2◦-9◦ finger wrist-worn
Digits [42] sensor

magnetic field 3 3mm mobile magnets
SmartMagnet devices

hibitive cost in a large-scale IoT system. Besides, the hand-
movement trajectory derived from CSI has an error of nearly
5 cm in [30] that might affect the gesture-distinguishment
performance. In [31], the authors localized one IoT device
by using the inertial magnetometer to measure its bearing.
Compared with our work, their localization accuracy is
relatively lower with an average error of 13 cm. The authors
in [32] and [33] designed elaborate touch gestures to en-
hance password-based mobile device authentication. Such
techniques can provide probabilistic defenses only against
the in-situ attack. In contrast, MagDraw can also defeat the
remote attack launched by the most powerful attacker who
manages to perform the correct password gesture.

Our work is also related to the rich literature on user
authentication in the established input environment. In [34],
the authors utilized the hand-surface vibration response for
biometric authentication by requiring a user to put his hand
on a flat surface. In [35], the authors authenticated a user by
the physical vibration of one specific surface the user inputs
on. The authors in [36] integrated one small microphone
into the earphone and required the user to listen to some
sounds. By analyzing the backscattered signal, they used
the earphone to authenticates the user. In [37], the authors
used a static sound source to transmit an acoustic signal to
the mobile device. By analyzing the received signal, they
measured the location of the moving device. This line of
work is orthogonal and complementary to our work.

Finally, there are some user-authentication schemes
based on gesture tracking in the air [30], [38]–[42]. We list
some representative gesture-tracking systems in Table 7.
Compared with these tracking methods, SmartMagnet tar-
gets a totally different application context and does not need
complex hardware except some cheap commodity magnets
with nearly the smallest tracking error. Moreover, Smart-
Magnet users just need to perform gestures with ubiquitous
smartphones instead of any extra device.

7 CONCLUSION AND FUTURE WORK

In this paper, we presented the design and evaluation of
SmartMagnet, a PBAC scheme for large IoT systems based
on commodity smartphones and cheap magnets. Extensive
experiments have confirmed that SmartMagnet is highly
resilient to lost/stolen smartphones and also remote attacks
via stealthy signal relaying. We have also shown that Smart-
Magnet is highly usable.

In SmartMagnet, we need to have prior knowledge
of some magnet configuration parameters to recover the
gesture trajectory, such as each magnetic constant. Such
information may be hard to obtain due to the complex elec-
tromagnetic structures. Therefore, the extension of Smart-
Magnet under these scenarios is left as our future work. In
addition, we will explore the potential of other mobile de-
vices such as various wearables embedded with the attitude
sensor and magnetometer to enhance SmartMagnet.
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